Optimal Seismic Reflectivity Inversion: Data-Driven $\ell_p$ -Loss-$\ell_q$ -Regularization Sparse Regression
نویسندگان
چکیده
منابع مشابه
Seismic sparse-layer reflectivity inversion using basis pursuit decomposition
Basis pursuit inversion of seismic reflection data for reflection coefficients is introduced as an alternative method of incorporating a priori information in a seismic inversion process. The inversion is accomplished by building a dictionary of functions, representing seismic reflection responses, and constituting the seismic trace as a superposition of these responses. Basis pursuit decomposi...
متن کامل3D Inversion of Magnetic Data through Wavelet based Regularization Method
This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...
متن کاملNon-linear least-squares inversion with data-driven Bayesian regularization
The non-linear inverse problem is formulated in a Bayesian framework. The multivariate normal distribution is assumed in both the noise and prior distributions. However, only the structures of the covariance matrices have to be specified, estimation of the variance levels is included in the inversion procedure. The maximum a posteriori approximation is derived, and the final result is a weighte...
متن کاملOptimal Data-Driven Regression Discontinuity Plots∗
Exploratory data analysis plays a central role in applied statistics and econometrics. In the popular regression-discontinuity (RD) design, the use of graphical analysis has been strongly advocated because it provides both easy presentation and transparent validation of the design. RD plots are nowadays widely used in applications, despite its formal properties being unknown: these plots are ty...
متن کاملSparse Reduced Rank Regression With Nonconvex Regularization
In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Geoscience and Remote Sensing Letters
سال: 2019
ISSN: 1545-598X,1558-0571
DOI: 10.1109/lgrs.2018.2881102